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A Monte Carlo Method for the Dirichlet
Problem of Dielectric Wedges

REINHARD SCHLOTT

Abstract —The Monte Carlo method considered here can he used to

numerically compnte electrostatic potentials inside a closed surface where

a) the potential on the surface is known and b) the dielectic constant

inside the surface .hanges only on boundaries. In this paper a modification

is proposed to previously employed Monte Carlo methods, to overcome

problems presented by dielectric wedges. In addition it is shown how it can

be easily determined whether or not a point is inside a given domain. The

connection between this topological problem and the Monte Carlo tech-

nique is explained.

I. INTRODUCTION

c ONSIDER the Dirichlet problem for the potential

function V on a two-dimensional domain G:

V“(cvv(x))=o forx GG

V(x) =vo(x) on the boundary dG (1)

where c denotes the permittivity, which is constant in

certain subdomains. Since it is not always possible to find

an analytic solution for (l), many numerical methods have

been developed. A special class of these methods form the

Monte Carlo techniques which result from the so-called

probabilistic potential theory.

It was shown by Kakutani [1] in 1944 that there is a

mathematical relation between the Brownian motion of a

particle and potential theory, Since then this theory has

been extended and improved by many authors (e.g. [2]-[4]).

For a comprehensive review of the subject the reader is

referred to Griego and Hersh [5].

To get an idea of how the solution of problem (1) is

computed by means of the Monte Carlo technique, imag-

ine a particle undergoing Brownian motion inside a region

G. The moving particle is released from point M and after

some time will hit the boundary at a certain point x ● d G.

Now repeat this moving-particle experiment n times. Then

the potential in M is given by the expected value of the

potentials at the boundary points x,= 13G[6]:

(2)

In order to obtain a reasonable approximation of the

potential the experiment (called the random-walk process

in terms of Monte Carlo notation) has to be repeated
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many times. Of course we want the simulated random

walk to be as efficient as possible. One might employ a

grid of points (seperated by h) in domain G and random

walk from point to point. The accuracy of the method

would obviously depend on h: the smaller h the more

accurate the computed potential. Halving the width of the

grid means at least a fourfold increase in computing time

(for a more precise analysis see also [7]). Muller [8] showed

that the step size need not be small for all positions of the

point and he proposed the maximum-sphere procedure.

Royer [6] employed the maximum-sphere technique in his

procedure. In spite of his efforts, some difficulties re-

mained unsolved. In order to show this, we briefly describe

Royer’s technique below.

Let us define the maximum sphere [8] as the largest

sphere S(xo) with center at XO which is entirely contained

in G; obviously the radius of this sphere is given by

l-= JrlfGlx — q. (3)

The maximum-sphere process is the procedure of comput-

ing the maximum sphere of a given point, generating a

uniformly and randomly distributed position on the surface

of the sphere, and continuing this process iteratively at the

new position until the process hits the boundary.

In technical applications of (l), e.g. in transmission line

problems, the domain G frequently is seperated into sub-

domains of different dielectrical properties c,. The poten-

tial has to fulfill certain continuity and jump relations at

the interfaces dI of these subdomains. It will be seen that

it is useful to modify the definition of the maximum sphere

S(XO) with radius

rl = inf lx - XOI
xGaI, aG

(4)

whereby X. denotes again the center of the sphere. In
words, this means that a small sphere with center at XO

would be expanded as much as any boundary 81 or a G

would allow (Fig. 1).

Step by step, the procedure is as follows:

1) The process starts in XO:= M, where we wish to

compute the potential V(M).

2) Determine the maximum sphere S(x,) at xi with the

help of (4).

3) The point x,. ~ is selected uniformly and randomly

on S(x, ).
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Fig. 1. Choice of the (maximum) sphere in different situations of the

maximum-sphere process. (a) xl is nearest to a dielectric edge, x2 to

dG, and X3 to i3Z. (b) If x is found on a curved dielectric interface, the

radius of the sphere is r. = 8 to ensure that the curved interface is

aPProfiately a straight line within the sphere.

Note that, as has been shown in [8], that the maximum-

sphere process converges to the boundary 8 G of the do-

main G with probability 1. In practice, the process must be

interrupted at some small maximum-sphere radius rI to

avoid computation times which are too long. Accordingly,

each 81 and d G has adjoining regions which are 8 wide

(see Fig. 1). For more details and an error estimation see

[6]. Continuing our description of the procedure, incorpo-

rating dielectric boundaries, we have:

4) In case a position x, generated randomly is entering

a 8 neighborhood of (cf. Fig. 2)

a) the boundary a G: Generate a position xi+ ~ uni-

formly and randomly on a sphere with radius & If

the new position has crossed the boundary a G the

random walk is terminated and the potential at

dG(xi) is noted for use in (2). Otherwise continue

the process as above.

b) the boundary i31 Generate a position xi+ ~ uni-

formly and randomly on a sphere with radius 8. If

the new position has not crossed the interface
continue as defined above. Otherwise relocate the

process on the point of intersection xl +Z of the

interface and the straight line between x, and

Xi+ ~. Now choose a sphere with center X,+ t and

radius r~ which is small compared to the radius Of

curvature of the dielectric boundary (Fig. l(b)).
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Fig. 2. The sphericaJ process enters the 8 neighborhood of (a) the
boundary a G: P’( d G(x1 )) is the resulting potential of the experiment;

(b) the boundary a I: x,+ Z is the position of relocation when crossing

the boundary.
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Fig. 3. Configuration to describe the use of the transition probabilities

determined by (5) imd (6).

This guarantees that the dielectric boundary en-

closed by the sphere appears like a straight line (in

two dimensions). If the interface is not curved

select the maximum sphere. To take the change in
permittivity within the sphere into account, jump

into the region designated by Cl with probability
(Fig. 3)

Pi=%/1(%+~2) (5)

and into the dielectric cz with probability

P2=l–z%=%/(61+t2). (6)
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Now select a new position x,+ ~ uniformly at

random either on the half-sphere Sh, ,,(xi + ~) or

Sk,,,(x, + ~) according to (5) and (6). Continue the

process as defined above.

The probabilities pl and pz are called transition probabili-

ties for the associated dielectrics El and ~*. The calculation

of these has been carried out by Royer [6]. For the case

where the point xl+ ~, mentioned in b) of step 4), is the

vertex of a dielectric wedge (or, better, is very close to a

dielectric edge since the probability of catching a point in

a continuous distribution is zero), a difficulty occurs. In-

asmuch as the radius of curvature of a vertex is zero, the

above-mentioned sphere must have a radius going to or

equal to zero. This would cause a degeneration of the

process.

It is the purpose of this paper to present some ideas to

overcome this dilemma. We determine the transition prob-

abilities for a position of the process located on or near the

vertex of dielectric wedges and show how to choose the

sphere in this situation.

II. TRANSITION PROBABILITIES

Consider n dielectric plane wedges of permittivity ~, and

opening angles 0, with vertices unified in M (Fig. 4).

Given the potential F’(a, T) on a cylinder r = a as a

function of q, we want to compute the potential V(M) in

M. We begin with Gauss’s theorem [9] in homogeneous

charge-free space:

(7)

Fig. 4. Dielectric wedges with center in M, given the potential V(a, q).

factor r and then integrate with respect to r:

Changing the order of integration:

and representing the integral over r by the potentials of

the limits:

where D~ denotes the normal component of the electric (14) becomes
displacement and dS the surface element of the closed n

surface S. E Jci

Considering only cylindrical problems, Gauss’s theorem i=~ 1,

can be reduced to Furthermore, since

(8)

where dl denotes the curve element.

The electric displacement in the radial direction /, can

be written as

D~=cE,(r, ~). (9)

Expressing the curve element in terms of the angle q,

dl=rdq (lo)

Gauss’s theorem becomes

(13)

(14)

/()“E r dr=V(0)– V(a) (15)
o

@w)rdv=o (11)

Since the cylinder in r = a encloses regions with different

dielectrics, we have to integrate piecewise over the circular

arcs 1, = ll(r)(i =1,. -., n) weighted by c,:

~ ~cZE,,(r, cp)rdq = O. (12)
~=1 1,

Since the integration in (12) is with respect to q, we may

~(0, p)–~(a, q)]drp=O. (16)

V(O, q) is the desired potential V(M):

y(o, q)=v(ll’f), j=l,. ... ~ (17)

(16) results in

The integrand on the left-hand side of (18) does not

depend on q and therefore (18) simplifies to
H .

which leads to the result

,=]

by resetting dl = adq. We explain the factor

6,0,
Pi– n

——

~ c .0.
j=~ J J

(21)
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as the transition probabilities searched for. Since p,>O

and the conservation relation X;= ~p, = 1 holds, it is en-

sured that the p, are in fact probabilities.

Note that the radius a in (20) has been chosen arbi-

trarily. This implies a feasible expansion of the sphere

S(M) to the maximum sphere defined by (4). Now we are. .
able to

process

4) c)

complete the description of the- rnakimitm-sphere

begun in the Introduction, adding:

a dielectric edge (vertex): Displace xi exactlyl to

the dielectric edge xl+ ~. Determine the maximum

sphere S(XZ + 1), which encloses now n wedges
with dielectric c~. Generate a position x,+ z uni-

formly and randomly on the circular arc lk de-

termined at random with the help of (21).

As a special case we consider the straight line (n= 2,

f31= 92 = T). Simplification of (20) yields:

The solution thus reduces to that presented in [6, eq. (12)].

III. A TOPOLOGICAL METHOD

For the purpose of a simple computation of the maxi-

mum sphere and the determination whether a boundary

has been crossed, it is necessary to compute the domain G

in which the randomly walking point is located. The

method which we will use to make the above computation

employs the following theorem.

Theorem: Suppose D is a Convex domain with smooth

~oundary dD in the Euclidean plane ~ 2 and 206 dD. Let

PZO E dD be defined as the orthogonal projection of ZO

onto dD; i.e., we” have

(23)

If R denotes the outer normal with respect to D at Fzo,

then the following are equivalent:

(24)

(ii) Z.= D.

For illustration see Fig. 5(a).

Remarks: In this theorem we assumed for simplicity

that Q is convex (this determines the orthogonal projec-

tion Pzo uniquely) and, that 13D is smooth (this ensures the

existence of a unique outer normal at each point Z’= 13D).

Below we show how to deal ‘with a general simply con-

nected domain bounded by a polygonal curve. For such

domains it is very easy to compute the outer normals

explicitly and so the theorem can be used quite effectively.

In a polygonal curve proceed as follows: Extend “the poly-

gon sides connected with this edge beyond the edge point,

1This dkplacement avoids degeneration of the’ process. We have to

allow the smrdl error which takes place by this procedure. The method of
testing for an intersecticsn close to an edge by anatogy with 4) a) and b)

does not make sense since the dimension of the edge point is zero.
,,
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i

(b)

Fig. 5. How to decide whether a given pc,sition 20 is inside or ontsi(le a
predefine domain D. (a) If the outer norrnaf in .? has the same

direction as 7-20 it follows that E’. G D. (b) In the case where 8D is a

polygon it is possible that 70 is near an edge point E. In this sitisation

the extensions of ~E1, ~E1 and ~E2, fi~2 give inforrnatioP about the
site of 20 in relation to D.

v’.

Fig. 6. The procedure of Meschkowski [12] to determine the site of a
point 70 in ~elatimt to a given, domain D. If the number of intersec-

tions is odd, FOsD; otherwise ?0 @ D.
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Fig. 7. The box used for the sample calculations. The potentials of the right, left and lower sides are zero. The upper side has

the potential 1 V.

(4

x’

(b)

Fig. 8. Sample calculations for the ~onfiguration shown in Fig. 7. The common parameters are rS/H = 0.0005; 95 percent
confidence limits and the number of random walks was 10 000. (a) a/W= 0.5; b/H= 0.5; W/H= 1.0; c1/<0 = 3;

c2/~0 ‘1. (b) U/w= 0.5; b/ff=O.5; W/H=l.O; q/CO ‘1: c2/fo = 3. (c) a/w= 0.25; b/H= 0.8; w/H= 2.0;
%/CO ‘lo; %/CO ‘1. (4 a/w= O.’2Z b/H= 0.8; w/H= 2.0: clico =1; C*/Co=10.
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which now becomes the intersection of two straight lines

(see Fig. 5(b)). Using the new polygon dD* and the above

theorem decide whether or not 20 = D.

Note that the extrapolations of the ab~ve-mentioned

polygon sides have the same outer normal as the polygon

sides themselves. This modification of the polygon dD

does not change the topology as long as 70 remains in

dD*(ZO G 8D* and 2’0E dD is the limiting case in which

the outer normal of ~= dD just exists).

The proof can be outlined as follows [10]: Consider the

maximum sphere S( ZO) with positive orientation of its

boundary i3S. Assume the same orientation for the

boundary PD. The winding number n ( I’, ZO)’ (here we

make use of the isomorph@m R 2s C) of a point ZO in the

complex plane C with respect to a simple closed curve r

[11] determines whether ZO is inside or outside of r

depending on whether n (r, ZO) = 1 or O. The homotopy

property [11] of the winding number and knowledge of the

outer normals at a sphere shows that 2 has the same

direction as .2’– 70 if and only if ;’= D.

We have not been able to find the above theorem

anywhere in the literature. Meschkowski [12], however,

describes another technique for determining whether or

not 70 c D. The procedure involves counting the number

of intersections of a ray, originating at 2“, makes with the

boundary dD. If this number is odd, F. G D; otherwise

70 @ D (for illustration see Fig. 6).

The advantage of our procedure stems from the confor-

mity of (23) and (4). Equation (23) describes nothing less

than the maximum sphere in a general domain (which may

be G or a subdomain boundary by i3G or dI). The benefit

in programming expense is obvious since the procedure for

computing the maximum sphere must be carried out any-

way.

IV. AN EXAMPLE

Consider a rectangular dielectric wedge (n = 2, 191= 7r/2,

6Z = 3T/2). In this case, (21) yields the transition probabil-

ities

P1=~l/(~1+3~2) for the circular arc 11 (25)

and

p2 = 362/(61+362) for the circular arc lZ. (26)

The dielectric wedge is embedded into a potential box
(Fig. 7) whose sides are at potential O with the exception of

the upper side, which is at potential VO= 1 V. We have

computed the potential on the straight line ~. The dielec-

trics c1 and C2 are viewed as parameters (see Fig. 8(a)-(d)).

The confidence limits are calculated with the method

derived by Royer [6]. The number of random walks ex-

ecuted was N =10 000. The curves plotted in Fig. 8(a)–(d)

are the exact solutions obtained by application of the finite

difference method and an overrelaxation algorithm [13].

The representation of the dielectric edge as well as’ the

interface in terms of finite differences has been established

by Green [14].
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Fig. 9. The radius r, of the maximum sphere for points on the straight

line A B. A small range of relocation 8 is to take into account to avoid

a degeneration of the mswimmn-~ph?re process.

A comparative study of the Mcnte Carlo method and

finite element method was presented in [15]. However, in

that paper the Monte Carlo method was not implemented

for dielectric boundaries.

Since in our exruyple the process was always started

from the straight line Z; it is interesting to consider the

radius of the maximum sphere r, for points on the straight

line ~ (Fig. 9). The method developed in t&s paper

makes it possible to choose the maximum sphere with

radius r, = max { IEBI, IEAI} when the process is entering

the i neighborhood of E. The conditions in Fig. 9 have

been chosen such that the maximum sphere is not affected

by the top and bottom of the box, Otherwise the vertices

of the function in Fig. 9 are cut off as indicated by the

broken line.

V. CONCLUSIONS

In accordance with Royer [6] one could say that “the

method may... be useful for spot-checking potentials ob-

tained by other meth~ds or for solving problems for which

only a few potentials are required.’”

Since the recent appearance of vector machines, the

importance of the Monte Carlo method is growing. Utiliz-

ing the special architecture of these computers, it is possi-

ble to process several random’ walks in parallel, which

reduces computation time considerably.

Carrying out calculations at high speed and with suffi-
cient accuracy for domains with arbitrary curved

boundaries is still quite difficult. Nevertheless, the Monte

Carlo technique and the further development in this paper

allow computation of the potentials for doma@s with

different dielectrics bounded by arbitrary polygon curves.

With the aid of the theorem stated in Section 111, it is

possible to detect whether a given point 20 is inside or

outside a domain D. Although the theorem is valid for any

b~undary curve 13D, the applicaticln is recommended only

if the outer normal of each point ,Z’C dD is known before

computation starts. This requirement is easy to perform if

the boundary curve iJD is represented by a polygon, which
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has only a finite number of outer normals at the boundary

ai3.
.,
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