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A Monte Carlo Method for the Dirichlet
Problem of Dielectric Wedges

REINHARD SCHLOTT

Abstract —The Monte Carlo method considered here can be used to
numerically compute electrostatic potentials inside a closed surface where
a) the potential on the surface is known and b) the dielectric constant
inside the surface “hanges only on boundaries. In this paper a modification
is proposed to previously employed Monte Carlo methods, to overcome
problems presented by dielectric wedges. In addition it is shown how it can
be easily determined whether or not a point is inside a given domain. The
connection between this tepological problem and the Monte Carlo tech-
nique is explained.

I. INTRODUCTION

ONSIDER the Dirichlet problem for the potential
function V on a two-dimensional domain G:

V- (evV(x))=0 forxeG
V(x)=Vy(x)  ontheboundarydG (1)

where € denotes the permittivity, which is constant in
certain subdomains. Since it is not always possible to find
an analytic solution for (1), many numerical methods have
been developed. A special class of these methods form the
Monte Carlo techniques which result from the so-called
probabilistic potential theory.

It was shown by Kakutani [1] in 1944 that there is a
mathematical relation between the Brownian motion of a
particle and potential theory. Since then this theory has
been extended and improved by many authors (e.g. [2]-[4]).
For a comprehensive review of the subject the reader is
referred to Griego and Hersh [5].

To get an idea of how the solution of problem (1) is
computed by means of the Monte Carlo technique, imag-
ine a particle undergoing Brownian motion inside a region
G. The moving particle is released from point M and after
some time will hit the boundary at a certain point x € 9G.
Now repeat this moving-particle experiment » times. Then
the potential in M is given by the expected value of the
potentials at the boundary points x, € JG[6]:

()

In order to obtain a reasonable approximation of the
potential the experiment (called the random-walk process
in terms of Monte Carlo notation) has to be repeated

V(M) = lim an V(x,)/n.
no0 1
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many times. Of course we want the simulated random
walk to be as efficient as possible. One might employ a
grid of points (seperated by %) in domain G and random
walk from point to point. The accuracy of the method
would obviously depend on A: the smaller & the more
accurate the computed potential. Halving the width of the
grid means at least a fourfold increase in computing time
(for a more precise analysis see also [7]). Muller [8] showed
that the step size need not be small for all positions of the
point and he proposed the maximum-sphere procedure.
Royer [6] employed the maximum-sphere technique in his
procedure. In spite of his efforts, some difficulties re-
mained unsolved. In order to show this, we briefly describe
Royer’s technique below.

Let us define the maximum sphere [8] as the largest
sphere S(x,) with center at x, which is entirely contained
in G; obviously the radius of this sphere is given by

(3)

r= inf |x— x|
xe[)G1 O|

The maximum-sphere process is the procedure of comput-
ing the maximum sphere of a given point, generating a
uniformly and randomly distributed position on the surface
of the sphere, and continuing this process iteratively at the
new position until the process hits the boundary.

In technical applications of (1), e.g. in transmission line
problems, the domain G frequently is seperated into sub-
domains of different dielectrical properties €,. The poten-
tial has to fulfill certain continuity and jump relations at
the interfaces dI of these subdomains. It will be seen that
it is useful to modify the definition of the maximum sphere
S(x,) with radius
inf

rr=
x€dI,dG

(4)

|x = x|

whereby x, denotes again the center of the sphere. In
words, this means that a small sphere with center at x,
would be expanded as much as any boundary dI or 4G
would allow (Fig. 1).

Step by step, the procedure is as follows:

1) The process starts in xq:= M, where we wish to
compute the potential V(M).

2) Determine the maximum sphere S(x,) at x; with the
help of (4).

3) The point x,, is selected uniformly and randomly
on S(x,).

0018-9480 /88 /0400-0724$01.00 ©1988 IEEE



SCHLOTT: MONTE CARLO METHOD FOR DIRICHLET PROBLEM
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Fig. 1. Choice of the (maximum) sphere in different situations of the
maximum-sphere process. (a) x; is nearest to a dielectric edge, x, to
3G, and x, to 1. (b) If x is found on a curved dielectric interface, the
radius of the sphere is r, =8 to ensure that the curved interface is
approximately a straight line within the sphere.

Note that, as has been shown in [8], that the maximum-
sphere process converges to the boundary 3G of the do-
main G with probability 1. In practice, the process must be
interrupted at some small maximum-sphere radius r; to
avoid computation times which are too long. Accordingly,
each I and 3G has adjoining regions which are § wide
(see Fig. 1). For more details and an error estimation see
[6]. Continuing our description of the procedure, incorpo-
rating dielectric boundaries, we have:

4) In case a position x, generated randomly is entering

a 8 neighborhood of (cf. Fig. 2)

a) the boundary 3G: Generate a position x;; uni-
formly and randomly on a sphere with radius é. If
the new position has crossed the boundary 4G the
random walk is terminated and the potential at
dG(x,) is noted for use in (2). Otherwise continue
the process as above.

b) the boundary dI: Generate a position x, ., uni-
formly and randomly on a sphere with radius 4. If
the new position has not crossed the interface
continue as defined above. Otherwise relocate the
process on the point of intersection x,,, of the
interface and the straight line between x, and
x,,1- Now choose a sphere with center x,., , and
radius rg which is small compared to the radius of
curvature of the dielectric boundary (Fig. 1(b)).
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Fig. 2. The spherical process enters the 8 neighborhood of (a) the
boundary dG: V(3G(x,)) is the resulting potential of the experiment;
(b) the boundary 8I: x,_, is the position of relocation when crossing
the boundary.

152 s P1

Fig. 3. Configuration to describe the use of the transition probabilities

determined by (5) and (6).

This guarantees that the dielectric boundary en-
closed by the sphere appears like a straight line (in
two dimensions). If the interface is not curved
select the maximum sphere. To take the change in
permittivity within the sphere into account, jump
into the region designated by €; with probability
(Fig. 3) :

pr=e/(e+¢) (5)
and into the dielectric ¢, with probability
pa=1-pi=¢; /(61 €;). (6)
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Now select a new position x,,, uniformly at
random either on the half-sphere S,  (x;,,) or
Sh,e,(X,12) according to (5) and (6). Continue the
process as defined above.

The probabilities p; and p, are called transition probabili-
ties for the associated dielectrics €; and ¢,. The calculation
of these has been carried out by Royer [6]. For the case
where the point x,,,, mentioned in b) of step 4), is the
vertex of a dielectric wedge (or, better, is very close to a
dielectric edge since the probability of catching a point in
a continuous distribution is zero), a difficulty occurs. In-
asmuch as the radius of curvature of a vertex is zero, the
above-mentioned sphere must have a radius going to or
equal to zero. This would cause a degeneration of the
process.

It is the purpose of this paper to present some ideas to
overcome this dilemma. We determine the transition prob-
abilities for a position of the process located on or near the
vertex of dielectric wedges and show how to choose the
sphere in this situation.

II. TRANSITION PROBABILITIES

Consider #n dielectric plane wedges of permittivity €, and
opening angles 6, with vertices unified in M (Fig. 4).
Given the potential V(a,¢) on a cylinder r=a as a
function of ¢, we want to compute the potential V(M) in
M. We begin with Gauss’s theorem [9] in homogeneous
charge-free space:

(7)

where D, denotes the normal component of the electric
displacement and dS the surface element of the closed
surface S.
Considering only cylindrical problems, Gauss’s theorem
can be reduced to
¢@w=
!

where dl denotes the curve element.
The electric displacement in the radial direction &, can
be written as

J[ pds=o
Ay

(3)

D,=¢E(r,9).
Expressing the curve element in terms of the angle ¢,
dl=rdy

Gauss’s theorem becomes

-/leEr(r,(p)rdq)=O. (11)

Since the cylinder in r = a encloses regions with different
dielectrics, we have to integrate piecewise over the circular
arcs [,=1(r)(i= -, n) weighted by €,:

> ff, E,(r.9)rde=0.

=1

(9)

(10)

(12)

Since the integration in (12) is with respect to ¢, we may

]1(3)

~V(a,p)

1.(a) ‘
Fig. 4. Dielectric wedges with center in M, given the potential V(a, ¢).

factor r and then integrate with respect to r:

’ r, @) dodr=0. 13
L [ faEAr.e)de (13)

Changing the order of integration:
> J [ eiE(r.9) drdgp=0 (14)

i=1

and representing the integral over r by the potentials of
the limits:

fO”E(r)dr=V(0)—V(a) (15)

(14) becomes

gf [V0.9)~Vi(a,9)ldp=0. (16

Furthermore, since V,(0, ¢) is the desired potential V(M ):
V.(0,9) =V(M), 17)
(16) results in

;feV(M)dqv Zfe Via,9)de.  (18)

The integrand on the left-hand side of (18) does not
depend on ¢ and therefore (18) simplifies to

n n
V(M) ZEIBI= Z -/I‘GiV;(a,(P)d(P
i=1"4

=1

i=1,--,n

(19)

which leads to the result

€,

V(M) = >":n

Z

[;a franal @

by resetting dl = adp. We explain the factor
6101

n
2 €0,
j=1

(21)

b=



SCHLOTT: MONTE CARLO METHOD FOR DIRICHLET PROBLEM

as the transition probabilities searched for. Since p, >0
and the conservation relation X?_;p,=1 holds, it is en-
sured that the p, are in fact probabilities.

Note that the radius ¢ in (20) has been chosen arbi-
trarily. This implies a feasible expansion of the sphere
S(M) to the maximum sphere defined by (4). Now we are
able to complete the description of the maximum-sphere
process begun in the Introduction, adding:

4) c) a dielectric edge (vertex): Displace x; exactly! to
the dielectric edge x,, ;. Determine the maximum
sphere S(x,,;), which encloses niow n wedges
with dielectric €,. Generate a position x,,, uni-
formly and randomly on the circular arc /, de-
termined at random with the help of (21).

As a special case we consider the straight line (n=2,
6,=0,=m). Simpliﬁcation of (20) yields:

1 . € 1
V(M) = vdl |+ ——|— [vdl|. (22)
el+<2 ma Jy, € t+ey| mady,

The solution thus reduces to that presented in [6, eq. (12)].
1.

For the purpose of a simple computation of the maxi-
mum sphere and the determination: whether a boundary
has been crossed, it is necessary to compute the domain G
in which the randomly walking point is located. The
method which we will use to make the above computation
employs the following theorem.

Theorem: Suppose D is a convex domain with smooth
boundary 9D in the Euclidean plane R* and z, & 4D. Lét
on € 9D be defined as the orthogonal pmJectlon of Z,
onto dD; i.e., we have

A TorPOLOGICAL METHOD

(23)

If 7 denotes the outer normal with respect to D at on,
then the following are equivalent:

r= inf |Z—?0|=iﬁzo—2'0|.
F2

PZ,— 7,

@) #=—=—r (24)
|Pzo— 2

(i) z,eD.

For illustration see Fig. 5(a).

Remarks: In this theorem we assumed for simplicity
that D is convex (this determines the orthogonal projec-
tion I_;ZO uniquely) and. that 4D is smooth (this ensures the
existence of a unique outer normal at each point Z’€ dD).
Below we show how to deal with a general simply con-
nected domain bounded by a polygonal curve. For such
domains it is very easy to compute the outer normals
explicitly and so the theorém can be used quite effectively.
In a polygonal curve proceed as follows: Extend the poly-
gon sides connected with this edge beyond the edge point,

!This displacement avoids degeneration of the’ process. We have to
allow the small error which takes place by this procedure. The method of
testing for an intersection close to an edge by analogy with 4)-a) and b)
does not make sense since the dimension of the edge point is zero.
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Fig. 5. How to decide whether a given position Z; is inside or outside a
predefined domain D. (a) If the outer normal in 7 has the same
direction as 7 — 7} it follows that Z; € D. (b) In the case where 3D is a
polygon it is possible that 7, is near an edge point E. In this situation
the extensions of 4E,, BE, and CEZ, BE, give information about the
site of Z; in relation to D.

Fig. 6. The procedure of Meschkowski [L2] to determine the site of a
point Z, in relation to a given domain D. If the number of intersec-
tions is odd, 7, € D; otherwise 7, ¢ D.
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Fig. 7. 'The box used for the sample calculations. The potentials of the right, left and lower sides are zero. The upper side has
the potential 1 V.
> [ >
2l b {\\ G
- - . \ ;
(2) )
> =
B R
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Fig. 8. Sample calculations for the configuration shown in Fig. 7. The common parameters are §/H = 0.0005; 95 percent
confidence limits and the number of random walks was 10 000. (@) a/W =0.5; b/H=05; W/H=1.0; ¢ /e, =3:
€&/¢g=1.(b) a/W=05; b/H=05 W/H=10; € /eq=1: €,/¢;=3. (¢) a/W=025; b/H=08; W/H=20;
€ /¢=10; €, /¢;=1.(d) a/W=025; b/H=08; W/H=20;: ¢ /e, =1; ¢, /¢, =10.
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which now becomes the intersection of two straight lines
(see Fig. 5(b)). Using the new polygon dD* and the above
theorem decide whether or not zj, € D.

Note that the extrapolations of the above-mentioned
polygon sides have the same outer normal as the polygon
sides themselves. This modification of the polygon dD
does not change the topology as long as z}, remains in
dD*(Z, € dD* and 7, ¢ dD is the limiting case in which
the outer normal of 7€ dD just exists).

The proof can be outlined as follows [10]: Consider the
maximum sphere S(Z,) with positive orientation of its
boundary 3S. Assume the same orientation for the
boundary dD. The winding number n(T,z,) (here we
make use of the isomorphism R? = C) of a point z, in the
complex plane C with respect to a simple closed curve I'
[11] determines whether z, is inside or outside of T’
depending on whether n(I,z,) =1 or 0. The homotopy
property [11] of the winding number and knowledge of the
outer normals at a sphere shows that # has the same
direction as z' — zj, if and only if z, € D.

We have not been able to find the above theorem
anywhere in the literature. Meschkowski [12], however,
describes another technique for determining whether or
not zy € D. The procedure involves counting the number
of intersections of a ray, originating at zj,, makes with the
boundary d4D. If this number is odd, E'(; € D; otherwise
7, & D (for illustration see Fig. 6). '

The advantage of our procedure stems from the confor-
mity of (23).and (4). Equation (23) describes nothing less
than the maximum sphere in a general domain (which may
be G or a subdomain boundary by dG or dI). The benefit
in programming expense is obvious since the procedure for
computing the maximum sphere must be carried out any-
way.

IV. AN EXAMPLE

Consider a rectangular dielectric wedge (n= 2, 8, =7 /2,
0, =3m/2). In this case, (21) yields the transition probabil-
ities
(25)

P1=¢€ /(€ +3¢,) for the circular arc /;

and

P> =3€,/(€,+3¢,)  for the circular arc /,. (26)

The dielectric wedge is embedded into a potential box
(Fig. 7) whose sides are at potential 0 with the exception of
the upper side, which is at potential I/:)=_1_V. We have
computed the potential on the straight line 4B. The dielec-
trics €, and €, are viewed as parameters (see Fig. 8(a)—(d)).
The confidence limits are calculated with the method
derived by Royer [6]. The number of random walks ex-
ecuted was N =10 000. The curves plotted in Fig. 8(a)—(d)
are the exact solutions obtained by application of the finite
difference method and an overrelaxation algorithm [13].
The representation of the dielectric edge as well as the
interface in terms of finite differences has been established
by Green {14].
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- max{|EB|, RE|}

|RE|/2

Fig. 9. The radius r; of the maximum sphere for points on the straight
line AB. A small range of relocation 8 is to take into account to avoid
a degeneration of the maximum-sphere process.

A comparative study of the Monte Carlo method and
finite element method was presented in [15]. However, in
that paper the Monte Carlo method was not implemented
for dielectric boundaries.

Since in our example the process was always started
from the straight line 4B, it is interesting to consider the
radius of the maximum sphere r, for points on the straight
line AB (Fig. 9). The method developed in this paper
makes it possible to choose the maximum sphere with
radius 7, = max { |EB}, |[EA]} when the process is entering
the & neighborhood of E. The conditions in Fig. 9 have
been chosen such that the maximum sphere is not affected
by the top and bottom of the box. Otherwise the vertices
of the function in Fig. 9 are cut off as indicated by the
broken line.

V. CONCLUSIONS

In accordance with Royer [6] one could say that “the
method may... be useful for spot-checking potentials ob-
tained by other methods or for solving problems for which
only a few potentials are required.”

Since the recent appearence of vector machines, the
importance of the Monte Carlo method is growing. Utiliz-
ing the special architecture of these computers, it is possi-
ble to process several random walks in parallel, which
reduces computation time considerably.

Carrying out calculations at high speed and with suffi-
cient accuracy for domains with arbitrary curved
boundaries is still quite difficult. Nevertheless, the Monte
Carlo technique and the further development in this paper
allow computation of the potentials for domains with
different dielectrics bounded by arbitrary polygon curves.

With the aid of the theorem stated in Section III it is
possible to detect whether a given point z, is inside or
outside a domain D. Although the theorem is valid for any
boundary curve dD, the applicaticn is recommended only
if the outer normal of each point 7€ dD is known before
computation starts. This requirement is easy to perform if
the boundary curve 4D is represented by a polygon, which
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has only a flmte number of outer normals at the boundary
aG. :
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